Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Front Med (Lausanne) ; 11: 1345165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633315

RESUMO

Background: Hypoxic conditions and Pseudomonas aeruginosa (P. aeruginosa) infection are significant factors influencing the prognosis and treatment of patients with bronchiectasis. This study aimed to explore the potential for breath analysis to detect hypoxic conditions and P. aeruginosa infection in bronchiectasis patients by analyzing of volatile organic compounds (VOCs) in exhaled breath condensate (EBC). Methods: EBC samples were collected from stable bronchiectasis patients and analyzed using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GCMS). The association of VOCs with bronchiectasis patients' phenotypes including hypoxic conditions and P. aeruginosa isolation was analyzed, which may relate to the severity of bronchiectasis disease. Results: Levels of 10-heptadecenoic acid, heptadecanoic acid, longifolene, and decanol in the hypoxia group were higher compared to the normoxia group. Additionally, the levels of 13-octadecenoic acid, octadecenoic acid, phenol, pentadecanoic acid, and myristic acid were increased in P. aeruginosa (+) group compared to the P. aeruginosa (-) group. Subgroup analysis based on the bronchiectasis severity index (BSI)reveled that the levels of 10-heptadecenoic acid, heptadecanoic acid, decanol, 13-octadecenoic acid, myristic acid, and pentadecanoic acid were higher in the severe group compared to the moderate group. Multivariate linear regression showed that 10-heptadecenoic acid and age were independent prognostic factors for bronchiectasis patients with hypoxia. Furthermore, octadecenoic acid, phenol and gender were identified as independent prognostic factors for bronchiectasis patients with P. aeruginosa isolation. Conclusion: The study provides evidence that specific VOCs in EBC are correlated with the severity of bronchiectasis, and 10-heptadecenoic acid is shown to be a predictive marker for hypoxia condition in bronchiectasis patients.

2.
ACS Appl Bio Mater ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651321

RESUMO

3D printing of a living bioanode holds the potential for the rapid and efficient production of bioelectrochemistry systems. However, the ink (such as sodium alginate, SA) that formed the matrix of the 3D-printed bioanode may hinder extracellular electron transfer (EET) between the microorganism and conductive materials. Here, we proposed a biomimetic design of a 3D-printed Shewanella bioanode, wherein riboflavin (RF) was modified on carbon black (CB) to serve as a redox substance for microbial EET. By introducing the medicated EET pathways, the 3D-printed bioanode obtained a maximum power density of 252 ± 12 mW/m2, which was 1.7 and 60.5 times higher than those of SA-CB (92 ± 10 mW/m2) and a bare carbon cloth anode (3.8 ± 0.4 mW/m2). Adding RF reduced the charge-transfer resistance of a 3D-printed bioanode by 75% (189.5 ± 18.7 vs 47.3 ± 7.8 Ω), indicating a significant acceleration in the EET efficiency within the bioanode. This work provided a fundamental and instrumental concept for constructing a 3D-printed bioanode.

3.
Sci Adv ; 10(14): eadk5949, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578991

RESUMO

The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.


Assuntos
Criogéis , Hidrogéis , Camundongos , Animais , Silicones , Alginatos , Oxigênio , Esqueleto , Sobrevivência Celular
4.
Opt Express ; 32(5): 8205-8213, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439483

RESUMO

Thermal crosstalk and current crowding effects are pressing issues that significantly impact the beam quality and efficiency of vertical-cavity surface-emitting laser (VCSEL) arrays. In this paper, by taking advantage of the excellent current transmission characteristics of graphene, what we believe to be a novel VCSEL array based on graphene electrode is designed to realize vertical current injections. The series resistance and self-heating of arrays are reduced by controlling the transport direction of the current, effectively suppressing the thermal crosstalk effect. Furthermore, high array beam quality is obtained by optimizing the current density distribution in active regions. Ultimately, the high-power quasi-single mode emission of VCSEL arrays is achieved by introducing graphene electrodes (Gr-VCSEL array) designs. Compared to traditional VCSEL arrays, the 10 × 10 Gr-VCSEL array demonstrates a 41% reduction in series resistance, a side mode suppression ratio of 32 dB, and a divergence angle around 12 °. This structure simultaneously achieves quasi-single mode emission and effectively suppresses the thermal crosstalk effect, providing a new method for the development of high-beam quality VCSEL arrays.

5.
Chemphyschem ; : e202400078, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526528

RESUMO

Interactions between oxygen molecules play an important role in atmospheric chemistry and hypersonic flow chemistry in atmospheric entries. Recently, high-quality ab initio potential energy surface (PES) of the quintet O4 was reported by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. 10543 configurations were sampled and calculated at the level of MS-CASPT2/maug-cc-pVTZ with scaled external correlation. The PES was fitted to a many-body (MB) form with the many-body part described by the permutationally invariant polynomial approach (MB-PIP). In this work, the PIP-Neural Network (PIP-NN) and MB-PIP-NN methods were used to refit the PES based on the same data by Paukku et al. Three PESs were compared. It was found that the performances differ significantly in the O+O3 region as well as in the long-range region. Therefore, additional 1300 points were sampled, and the efficient compressed-state multistate pair-density functional theory (CMS-PDFT) was used to calculate the electronic structure of these 1300 points and 10543 points by Paukku et al. Then, a completely new quintet PES was fitted using the MB-PIP-NN method. Based on this PES, the quasi-classical trajectory (QCT) approach was used to reveal all possible reaction channels for hyperthermal O2-O2 collisions.

6.
J Environ Sci (China) ; 142: 236-247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527889

RESUMO

The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.


Assuntos
Carbono , Putrescina , Humanos , Animais , Cadaverina , Água , Rios/química , Sedimentos Geológicos/química , Ciclo do Nitrogênio , Nitrogênio
7.
J Fungi (Basel) ; 10(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535213

RESUMO

In this present study, five new wood-inhabiting fungal taxa, Botryobasidium gossypirubiginosum, Botryobasidium incanum, Botryobasidium yunnanense, Coltricia zixishanensis, and Coltriciella yunnanensis are proposed. Botryobasidium gossypirubiginosum is distinguished by its slightly rubiginous hymenial surface, monomitic hyphal system, which branches at right angles, and subglobose, smooth basidiospores (14-17.5 × 13-15.5 µm); B. incanum is characterized by its white to incanus basidiomata having a hypochnoid hymenial surface, and ellipsoid, smooth basidiospores (6.5-8.5 × 3.5-5 µm); B. yunnanense is characterized by its buff to slightly yellowish hymenial surface, monomitic hyphal system, and broadly ellipsoid to globose, smooth, thick-walled basidiospores (11.5-14.5 × 9.5-10.5 µm); Coltricia zixishanensis differs in its rust brown pileal surface, and ellipsoid, thick-walled basidiospores (5-6.5 × 4-4.5 µm). Coltriciella yunnanensis is distinguished by its tiny pilei, short stipe, and navicular, verrucose basidiospores (10.5-12.5 × 6-7 µm). Sequences of ITS and nLSU genes were used for phylogenetic analyses using the maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic results inferred from ITS sequences revealed that B. gossypirubiginosum was closely related to B. robustius; the species B. incanum was grouped with B. vagum; B. yunnanense was related to B. indicum. The species C. zixishanensis was grouped with C. confluens and C. perennis. ITS sequences revealed that C. zixishanensis was grouped into the genus Coltriciella, in which it was grouped with Co. globosa and Co. pseudodependens.

8.
Neurochem Res ; 49(5): 1226-1238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393622

RESUMO

Both epidemiological investigation and animal experiments demonstrated that pre-/postnatal exposure to perfluorooctane sulfonic acid (PFOS) could induce neurodevelopmental disorders. Previous studies showed that astrocyte was involved in PFOS-induced neurotoxicity, while little information is available. In the present study, the role of astrocyte-derived calmodulin-dependent protein kinase II (CaMKII)-phosphorylated discs large homolog 1 (DLG1) signaling in PFOS eliciting cytotoxicity in neuron was explored with primary cultured hippocampal astrocyte and neuron. The application of PFOS showed a decreased cell viability, synapse length and glutamate transporter 1 (GLT-1) expression, but an increased CaMKII, DLG1 and cyclic AMP response element binding protein (CREB) expression in primary cultured astrocyte. With 2-(2-hydroxyethylamino)-6-aminohexylcarbamic acid tert-butyl ester-9-isopropylpurine (CK59), the CaMKII inhibitor, the disturbed cell viability and molecules induced by PFOS could be alleviated (CREB expression was excluded) in astrocytes. The cytotoxic effect of neuron exposed to astrocyte conditional medium collected from PFOS (PFOS-ACM) pretreated with CK59 was also decreased. These results indicated that PFOS mediated GLT-1 expression through astrocyte-derived CaMKII-DLG signaling, which might be associated with injuries on neurons. The present study gave an insight in further exploration of mechanism in PFOS-induced neurotoxicity.


Assuntos
Ácidos Alcanossulfônicos , Astrócitos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fluorocarbonos , Ratos , Animais , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Cultivadas
9.
Water Res ; 253: 121336, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382291

RESUMO

Aerobic granular sludge is one of the most promising biological wastewater treatment technologies, yet maintaining its stability is still a challenge for its application, and predicting the state of the granules is essential in addressing this issue. This study explored the potential of dynamic texture entropy, derived from settling images, as a predictive tool for the state of granular sludge. Three processes, traditional thickening, often overlooked clarification, and innovative particle sorting, were used to capture the complexity and diversity of granules. It was found that rapid sorting during settling indicates stable granules, which helps to identify the state of granules. Furthermore, a relationship between sorting time and granule heterogeneity was identified, helping to adjust selection pressure. Features of the dynamic texture entropy well correlated with the respirogram, i.e., R2 were 0.86 and 0.91 for the specific endogenous respiration rate (SOURe) and the specific quasi-endogenous respiration rate (SOURq), respectively, providing a biologically based approach for monitoring the state of granules. The classification accuracy of models using features of dynamic texture entropy as an input was greater than 0.90, significantly higher than the input of conventional features, demonstrating the significant advantage of this approach. These findings contributed to developing robust monitoring tools that facilitate the maintenance of stable granular sludge operations.

10.
Adv Healthc Mater ; : e2302331, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359321

RESUMO

Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.

11.
Bioact Mater ; 35: 274-290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38370865

RESUMO

The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ mineralization resources. In this work, we have developed a composite hydrogel that mimics the natural bone healing processes and serves as a seedbed for bone regeneration. The oxidized silk fibroin and fibrin are incorporated as rigid geogrids, and amorphous calcium phosphate (ACP) and platelet-rich plasma serve as the fertilizers and loam, respectively. Encouragingly, the seedbed hydrogel demonstrates excellent mechanical and biomineralization properties as a stable scaffold and promotes vascularized bone regeneration in vivo. Additionally, the seedbed serves a succinate-like function via the PI3K-Akt signaling pathway and subsequently orchestrates the mitochondrial calcium uptake, further converting the exogenous ACP into endogenous ACP. Additionally, the seedbed hydrogel realizes the succession of calcium resources and promotes the evolution of the biotemplate from fibrin to collagen. Therefore, our work has established a novel silk-based hydrogel that functions as an in-situ biomineralization seedbed, providing a new insight for critical-sized bone defect regeneration.

12.
Int J Biol Macromol ; 261(Pt 1): 129752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280705

RESUMO

Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostasia , Coagulação Sanguínea , Polissacarídeos/farmacologia , Hemorragia/tratamento farmacológico , Quitosana/farmacologia , Peptídeos/farmacologia
13.
Light Sci Appl ; 13(1): 33, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291018

RESUMO

Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies. Nevertheless, harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs' emission with the cavity mode, which is challenging for most cavities. Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator, and demonstrated a bright single-photon source derived from a deterministically coupled QD within this microcavity. Leveraging the cavity-membrane structures, we have achieved large spectral tunability via strain tuning. On resonance, a high Purcell factor of ~9 is attained. The source delivers single photons with simultaneous high extraction efficiency of 0.58, high purity of 0.956(2) and high indistinguishability of 0.922(4). Together with its compact footprint, our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip, therefore removing a major barrier to the development of solid-state quantum information platforms based on QDs.

14.
J Environ Manage ; 352: 120094, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237335

RESUMO

Soil texture is one of the most important indicators of soil physical properties, which has traditionally been measured through laborious procedures. Approaches utilizing visible near-infrared spectroscopy, with their advantages in efficiency, eco-friendliness and non-destruction, are emerging as potent alternatives. Nevertheless, these approaches often suffer from limitations in classification accuracy, and the substantial impact of spectral preprocessing, model integration, and sample matrix effect is commonly disregarded. Here a novel 11-class soil texture classification strategy that address this challenge by combining Multiplicative Scatter Correction (MSC) with Residual Network (ResNet) models was presented, resulting in exceptional classification accuracy. Utilizing the LUCAS dataset, collected by the Land Use and Cover Area frame Statistical Survey project, we thoroughly evaluated eight spectral preprocessing methods. Our findings underscored the superior performance of MSC in reducing spatial complexity within spectral data, showcasing its crucial role in enhancing model precision. Through comparisons of three 1D CNN models and two ResNet models integrated with MSC, we established the superior performance of the MSC-incorporated ResNet model, achieving an overall accuracy of 98.97 % and five soil textures even reached 100.00 %. The ResNet model demonstrated a marked superiority in classifying datasets with similar features, as observed by the confusion matrix analysis. Moreover, we investigated the potential benefit of pre-categorization based on land cover type of the soil samples in enhancing the accuracy of soil texture classification models, achieving overall classification accuracies exceeding 99.39 % for woodland, grassland, and farmland with the 2-layer ResNet model. The proposed work provides a pioneering and efficient strategy for rapid and precise soil texture identification via visible near-infrared spectroscopy, demonstrating unparalleled accuracy compared to existing methods, thus significantly enhancing the practical application prospects in soil, agricultural and environmental science.


Assuntos
Solo , Espectroscopia de Luz Próxima ao Infravermelho , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Redes Neurais de Computação , Agricultura , Luz
15.
Chemistry ; 30(19): e202304081, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38288909

RESUMO

Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.


Assuntos
Metionina Sulfóxido Redutases , Sulfóxidos , Biocatálise , Oxirredução , Catálise , Estereoisomerismo
16.
Int J Biol Macromol ; 260(Pt 1): 129540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244733

RESUMO

Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.


Assuntos
Metionina Sulfóxido Redutases , Sulfóxidos , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/análise , Metionina Sulfóxido Redutases/química , Sulfóxidos/química , Metionina
17.
Sci Adv ; 10(2): eadj5389, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38198560

RESUMO

Hydrogel-enabled skin bioelectronics that can continuously monitor health for extended periods is crucial for early disease detection and treatment. However, it is challenging to engineer ultrathin gas-permeable hydrogel sensors that can self-adhere to the human skin for long-term daily use (>1 week). Here, we present a ~10-micrometer-thick polyurethane nanomesh-reinforced gas-permeable hydrogel sensor that can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 8 days under daily life conditions. This research involves two key steps: (i) material design by gelatin-based thermal-dependent phase change hydrogels and (ii) robust thinness geometry achieved through nanomesh reinforcement. The resulting ultrathin hydrogels exhibit a thickness of ~10 micrometers with superior mechanical robustness, high skin adhesion, gas permeability, and anti-drying performance. To highlight the potential applications in early disease detection and treatment that leverage the collective features, we demonstrate the use of ultrathin gas-permeable hydrogels for long-term, continuous high-precision electrophysiological monitoring under daily life conditions up to 8 days.


Assuntos
Hidrogéis , Pele , Humanos , Dessecação , Engenharia , Alimentos
18.
Light Sci Appl ; 13(1): 19, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228609

RESUMO

Incorporating topological physics into the realm of quantum photonics holds the promise of developing quantum light emitters with inherent topological robustness and immunity to backscattering. Nonetheless, the deterministic interaction of quantum emitters with topologically nontrivial resonances remains largely unexplored. Here we present a single photon emitter that utilizes a single semiconductor quantum dot, deterministically coupled to a second-order topological corner state in a photonic crystal cavity. By investigating the Purcell enhancement of both single photon count and emission rate within this topological cavity, we achieve an experimental Purcell factor of Fp = 3.7. Furthermore, we demonstrate the on-demand emission of polarized single photons, with a second-order autocorrelation function g(2)(0) as low as 0.024 ± 0.103. Our approach facilitates the customization of light-matter interactions in topologically nontrivial environments, thereby offering promising applications in the field of quantum photonics.

19.
Waste Manag ; 174: 666-673, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176124

RESUMO

Homogeneous Fenton (Fe2+/H2O2) serves as a high-efficiency conditioning method for sludge dewatering due to the generation of strong oxidizing hydroxyl radicals (OH). However, high dose of ferric salts produces iron-rich dewatered sludge and decrease sludge organic matters, which will not be conducive to the subsequent disposal and reutilization. Considering advantages of Fe3O4 as heterogeneous Fenton catalyst, Fe3O4-activated H2O2 (Fe3O4 + H2O2) in this study was adopted to improve sludge deep-dewatering. Reduction efficiency of the bound water (71.3 %) after Fe3O4 + H2O2 treatment (after a reaction time of 30 min) were much higher than those in the Fe2++H2O2 treatment. Especially, the moisture content of treated sludge cake by Fe3O4 + H2O2 remarkably decreased from 86.4 % to 61.3 %. Improvement mechanism of sludge dewatering after Fe3O4 + H2O2 treatment mainly included electrostatic neutralization, reactive radical oxidation, and skeleton building by analysis of contribution factors. The generation of H+ in acidification could neutralize the negatively charged compounds to promote sludge hydrophobicity. Meanwhile reactive radicals generated from Fe3O4 + H2O2 destroyed sludge extracellular polymeric substances and cell structure to release intracellular water. Furthermore, Fe3O4 as a skeleton builder could reconstruct destructive sludge flocs and form new dewatering channels. Finally, low Fe leaching content and recoverability of Fe3O4 effectively will decrease environmental implication.


Assuntos
Peróxido de Hidrogênio , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Oxirredução , Água/química
20.
Nanoscale Horiz ; 9(3): 365-383, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38230559

RESUMO

Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.


Assuntos
Nanoestruturas , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Eletricidade , Fenômenos Mecânicos , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...